
Lecture - 6

Scope

• References as aliases

• Returning a reference from a function

• const (Constant) Objects

• const Member functions

References as aliases

• References can also be used as aliases for other variables
within a function
int main()

{ int count = 1 ;

 int &cref=count ;

 cref++;

 std::cout<<count ;

} • reference variables

must be initialized in

declarations and

cannot be reassigned

Returning a reference from a
function
• Problem – the function variables do not have scope outside

the function, and memory is de-allocated (dangling
references)

• The variable should be declared as static

const (Constant) Objects

• Some objects need not be modifiable

• Keyword const is used to specify that an object is not
modifiable

• Attempt to modify the constant object results in a compilation
error

Example

class time
{
public:
int hour; int minute;

int seconds;

time(int i,int j,int k) {

hour=i;minute=j;
seconds=k; }

}

void main()

{

const time
noon(12,0,0);

noon.minute=22;
//illegal

}

const Member function

• Compilers disallow member function calls for const objects
unless the member functions themselves are declared const

• Function is specified as const by inserting the keyword const
after the parameter’s list

Example void time::display2()

{
std::cout<<hour<<m
inute<<seconds;}

void time::display1()
const

{std::cout<<hour<<mi
nute<<seconds;}

class time

{

private:

int hour; int minute; int
seconds;

public:

time(int i,int j,int k) {
hour=i;minute=j;
seconds=k; }

void display1() const;

void display2();

}

void main()

{ const time
noon(12,0,0);

noon.display1();

noon.display2();
//ERROR

}

const Member function

• Compiler does not allow member functions declared const to
modify the object

Example void time::display2()

{

std::cout<<hour<<

minute<<seconds;}

void time::change()

const

{ hour=10; //ERROR}

class time

{

private:

int hour; int minute; int
seconds;

public:

time(int i,int j,int k) {
hour=i;minute=j;
seconds=k; }

void change1() const;

void display2();

}

void main()

{ const time
noon(12,0,0);

noon.change();

noon.display2();
//ERROR

}

Constructors/destructors

• Constructors/destructors cannot be const

• However, purpose of these special functions is to modify
object

• Special provision – though a constructor must be a non-const
member function, it can still be used to initialize a const object

(contd..)

• Invoking a non-const member function from constructor call
as part of initialization is allowed

• The “constness” of a const object is enforced from the time
the constructor completes initialization of the object until that
object’s destructor is called

Class assignment

• How can you control access to different variables in classes
(discuss about private and public access specifier)?

• What will happen if you make constructor as private member?

